
10/01/2024 1

Towards a Complete AI

Original presentation

The original presentation was shown at
NG23 in May 2023 to explain the
basics of the technology.

You find the original presentation in the
first section starting on the next page.

Contact

Stefan Gollasch – Founder Tesla Minds

ai@teslaminds.de

www.teslaminds.de

Complete AI

Tracks all the dependencies and
interactions of the entities in your game.

Automates Many Production Tasks

Suitable AI behaviour is inferred automatically.

Asset tracking during development, including
relations between entities, can be automated
with AI assisted tools.

During runtime the AI uses all information it
gathered during development to make the
gameworld perform to the designers’ specs.

Empowers Game Design

Designers can focus on high-level
systems and getting the mechanics right.

What is covered here

This presentation has two
parts:

#1 Lookahead: The first part
introduces how lookahead can
change what you can do with AI
and how this tech can enhance
traditional Behaviour Trees.

#2 Impact: The second part
explains the impact this tech
has on the production of
games. It says more on the
scope of the AI, how rules are
central for its design, and how
rules-based design streamlines
the development of AI and the
production of games in general.

The second section begins on
page 14.

tl;dr The last slide shows the
prototype AI architecture for a
quick tech overview.

mailto:ai@teslaminds.de
http://www.teslaminds.de/

10/01/2024 2

Presentation shown at Nordic Games, Malmö May 2023

Why this technology becomes feasible

10/01/2024 3

Possibilities & Lookahead

Logic to process what to do next

Proceed with the chosen action

10/01/2024 4

Interaction

Changes in the environment

Actor
Opponent

The logic what to do next and
how to proceed
requires context,
for instance how the environment
changes and what other actors do

10/01/2024 5

Leverage

Actor
Opponent

Leverage logic
Rules:
#1 If the opponent is at T1 when the actor
reaches L1, the actor is defeated.

#2 Reaching L2 forces the opponent to
defend T2.

#3 At T2 the opponent cannot reach T1
quickly enough to defend L1 if the actor is
at L2.

Goal

How does the AI figure out to
choose the better path to L1’?

L1

T1

T2 L2

L1’

Scenario
L1 is an open area, the opponent is a
sniper with an ideal vantage point at T1.

Reaching L2 forces the opponent to defend
his base at T2.

With the opponent at T2, L1 can be
reached before the opponent can reach T1.

“Do you employ leverage?”

10/01/2024 6

Behaviour Tree

Leverage is in principle doable

But there are issues:

#1 Knowledge of the leverage is required
from the implementer.

#2 Multiple leverage dependencies
increase the complexity massively.

#3 Multiple condition checks imply
increased state tracking.

#4 What happens if the movement is
interrupted?

?

?

NotVisitedL1

IsAtL2

OppAtT2 GoToL1

OppAtT2

GoToT2!

HasPriorityL1

GoToL2

RegBehaviourA . . .?

IsAtL2

!

10/01/2024 7

Towards Generic AI

Logic to process
behaviour

Probe lookahead

Logic to process
behaviour

Probe lookahead

Logic to process
behaviour

Probe lookahead

Logic to process
behaviour

Probe lookahead

probereport

#1 Awareness of the implications of a
chosen behaviour.

#2 Behaviour is context-sensitive.

#3 Recursive interconnected state
processing machine.

#4 Leverage is determined automatically.

“Small change – huge impact”

10/01/2024 8

Leverage revisited

Computing cost

#1 Each lookahead node evaluates
against the assumed state it has. This
requires tracking of the path leading to it
and the actions taken so far.

#2 Tracking of the assumed actions of the
opponent is also required.

#3 Identified leverage works as a
watershed to match actions against those
of the opponent.

L1

T1

T2 L2

L1’

Determining the value
Each leaf node, where lookahead stops,
returns a value.

This value is returned back through the
chain and at branches decides which is the
better choice.

“Increased awareness vs cost”

T2’

ValueSuccessL1ValueDefeated ValueCapturedBase

ValueWinDestroy

ValueDefendBase

ValueDefendBase < ValueWinDestroy Can choose ValueSuccessL1 | ValueCapturedBase because opponent
tracking at L2 indicates that the opponent can prevent only one of the two
options. Technically the opponent has to choose between going to T2 or T1
before the actor reaches L3.

BUT

L3

10/01/2024 9

Utmost Efficiency

“The reason why nobody tried it so far”

Computing cost

Computing the behaviour logic of n nodes
of a lookahead is n-times more expensive
than what a single node requires.

Moreover tracking the state for each node
of a lookahead can be even more
expensive because it requires data
bandwidth too.

This is even more expensive if the state of
the actor has to be matched against the
assumed states of the environment and
other actors.

Mitigating the runtime cost

#1 With decisions being made based on
lookahead value the actual decision making
logic in a node can be very simple.

#2 Valuation of actions that happen at a
node can often be based on precomputed
values.

#3 Lookahead variants selected at a node
can be limited to the most significant
choices.

#4 The tracking of the state, what has
transpired so far, can be reduced to a
limited number of binary flags.

#5 Tracked data like assumed opposition
behaviour can be shared and reused.

#6 Code for the lookahead can be heavily
optimized, so that 100 million lookahead
nodes can be processed in a second, or
one million in an acceptable time frame.

Focus on the most significant
actions, relations, nodes

10/01/2024 10

Entity Behaviour

“Entities gain a measure of awareness”
Relationships between entities

With lookahead and leverage rules that
define how one entity reacts to actions of
another, entities gain a measure of
awareness of their environment.

#1 Entities of different type share one
common interaction space.

#2 Lookahead gives entities some
awareness of the implications of their
choices.

#3 Leverage rules tie the actions of different
entities together and align their actions
logically.

Integrated story nodes

Actors can assess the
implications of their
actions on the story and
alter their actions to
achieve favourable
outcomes.

This enables new
approaches to dynamic
story-telling.

Logic to process
behaviour

Logic to process
behaviour

Story node

10/01/2024 11

Development Methods and Tools

Logic to process
behaviour

Probe lookahead

Logic to process
behaviour

Probe lookahead

probereport

1. Implementation of behaviour trees

Initially all entities that need AI are implemented
using existing behaviour tree modelling. This is
done with existing tools which makes migration
easy.

Logic to process
behaviour

Logic to process
behaviour

Logic to process
behaviour . . .

2. Selective addition of lookahead

For seamless integration lookahead can be
implemented as a behaviour tree too .

The probe lookahead action in the BT is then
backed by a service implemented in C++.

This provides compatibility with the tools used to
evaluate behaviour and the existing development
environment.

Logic to process
behaviour Logic to process

behaviour

Probe lookahead

3. Refinement and optimization as needed

An incremental development process that step
by step interweaves the behaviour and
lookahead of different entities.

This is accompanied by developing tools and
high-performance algorithms as needed.

Organic gameworld with unmatched reactivity

#1 Entities have awareness of their environment.

#2 Actors adapt logically.

#3 Cause and effect (leverage) emerges naturally.

#4 Implemented as a rapid prototype and refined incrementally.

#5 Granularity of reactivity can be adjusted to meet performance
requirements.

#6 Uses existing tools and methods, e.g. C++ and UE5.

Logic to process
behaviour . . .

10/01/2024 12

Outlook

Organic gameworlds with unmatched reactivity

#1 Entities have awareness of their environment.

#2 Actors adapt logically.

#3 Cause and effect (leverage) emerges naturally.

Single-shard MMOs with intelligent DM

#1 Emergent systems distribute populations where
needed.

#2 Players are constrained by actions rather than
arbitrary limits.

Dynamic story-telling with adapting actors

#1 Actors gain awareness of potential story events.

#2 Natural competition to nudge events in a desired
direction.

#3 Competitors push back while allies support.

Strategy games without cheats

#1 With NPCs aware of cause-and-effect, the number-
crunching capacity of computers is a big advantage.

#2 Strategic planning and logistics work realistically.

#3 AI can balance and create interesting scenarios and
dynamic events that keep players engaged.

Team cohesion of NPC squads

#1 Team members align and support each other.

#2 Enemy squads adapt to what the player does.

#3 The AI is aware of what matters in a fight.

Creative playgrounds for new game principles

#1 This AI opens up new avenues

#2 Innovative features, emergent systems, and new
gameplay principles become feasible.

#3 Guidance and tutorials by the AI become a reality.

10/01/2024 13

Summary

● Extension of behaviour trees

● Lookahead gives entities awareness of their environment

● Cause-and-effect emerges naturally

● Build with existing tools: BehaviourTree.CPP, C++, UE5, Groot

● Migration of existing projects and hybrid systems possible

● Organic gameworlds in which different types of entities interact

● Highly streamlined design, implementation and tests

10/01/2024 14

More depth on the AI, follow-up on NG23

How the AI streamlines development and compares to other recent advances in AI

10/01/2024 15

Tracking of Rules

“What does it mean?” It doesn’t replace physics systems, assets, UI and other elements

#1 Instead the AI tracks the relations between entities: how they interact and
impact each other.

#2 It is the task of the designer to specify the rules, with customized tools
created as needed for this purpose.

#3 A system may have inherent built-in rules, like rigid body dynamics and
occlusion by opaque objects.

#4 Rules may be subsets and don’t need to describe the entire world.

The AI translates all rules into a
unified interaction space

#1 Natural interface between entities of
different type.

#2 Designers, scripters and programmers
don’t have to figure out how to make different
types of objects interact.

#3 Unmatched reactivity and built-in
interactivity of entities.

Many different formats of rules coexist

Equipment specs

Story

Story nodes, conditions, branches
Logic Behaviour of NPCs and entities

Data-flow & networksClear-cut definitions

Level design

Physics systems have implied rules

10/01/2024 16

Rules-driven AI

Emergent systems vs scripting

#1 In general this AI system is open and builds
emergent systems from granular definitions
(rules) that the designers specify.

#2 You can define rules that are so specific that
the outcome resembles traditional scripts.

#3 While #2 is the norm today, in an open world
it is only a specific case.

#4 Building persistent worlds from granular
definitions is hugely empowering – if you have
an AI that deals with the details.

Structural simulation with no/limited asset rendering

Designers can probe the runtime behaviour, including lookahead,
outcomes and the interactions that occur

Logic

Logic

Story

Runtime

Designers

#1 Entities, specs, properties.

#2 Mechanics and interactions.

#3 Rules that define

- Interactions

- Behaviour

- Cause and effect

AI designed during development

Rules
Other

Physics

legacy
systems

runtime
contraints

...

Rules
Narrative

Story nodes

conditions

branches

...

Rules
Design

Mechanics

interactions

behaviour

...

Rules accumulated and iterated during development

Serves as the
current state of

the AI

Can be inspected
and modified

with tools
providing access

to the AI state

Lookahead and simulation, persistence

Behaviour Trees

Decision making logic

Leverage mechanic, cause and effect

Entity and story logic

Rules
Core

In
te

rf
ac

e
an

d
 c

u
st

o
m

 t
o

o
ls

inspectmodify

Interface and custom tools
Narrative designers

#1 Story nodes, conditions.

#2 Branches and narrative rules.

Active observation

Active observation

Deployment

“Granular design,
 test, iteration”

10/01/2024 17

Huge Impact on Game Development & Design

Narrative design

Behaviour emerges from rules automatically

Instead of deferment of the creation of
behaviours to the end of the development cycle,
it can drive the development.

Game design

Rules

Iteration

Game in
development

AI in
development

Deployment tests

and analysis

Traditional design of
behaviour & reactivity

Product

Weapon specs change

Manual revision of
behaviour

Scripts have bugs

Level layout changes

Story conditions change

Skills change

Different equipment available

Crafting modified

Different team composition

Other balance requested

Work on behaviour
gets delayed

Behaviour remains
superficial

Rules continuously refine the reactivity
and invite the designers to observe
their impact.

Most of the tech dependent revision
cycles of the behaviour become
redundant, leaving the team free to
focus on what matters.

10/01/2024 18

Enhanced Reach of What a Team Can Achieve

Previously

#1 Large effort spent on dealing with the
technical issues of creating behaviours.

#2 The AI remains less ambitious because
advanced behaviour & reactivity is not in reach.

Straightforward squad or
arena shooter

Now

#1 Team focuses on adaptable behaviour in a reactive
environment.

#2 Team has the capability to stage competitions in
highly complex settings with many different trajectories.

Evolving world with dynamically emerging
challenges that require teams to adapt and a
DM that nudges them towards focus points

10/01/2024 19

Hybrid Systems

You can focus on any subset of rules

#1 If only specific aspects of behaviour and
reactivity should be handled by the AI, work can
be limited in scope.

#2 Rules can be defined that only relate to the
tasks the AI should fulfil.

If you only desire the AI to track walls and their impact on occlusion and
visibility for the actors in a level the AI can do just this.

Even a relatively simple subsystem like this can yield highly informative data
what happens in a level.

Such subsystems can be augmented and customized to yield AI assisted
insight in what interests you most. It is technically AI interpreted data that can
be processed in a variety of ways and allows to make links visible that a
human cannot perceive.

10/01/2024 20

AI Focus

Limit by rules

#1 Designers can specify desired skill
levels.

#2 Complex mental models can adjust
naturally to all kinds of situations.

#3 For example specific stimuli can
enhance skills, motivation, energy and
such.

Limit by computing constraints

#1 The AI can automatically adjust the
granularity of its processing.

#2 Time slices can be assigned to specific
functions.

#3 Resulting behaviour follows defined
priorities.

#4 Valuable tool to provide the best AI under
variable real-time constraints.

Priority

50%

30%

20%

Complex internal model

Perception

Caution

Ranged weapon
skills

10/01/2024 21

Comparison to Contemporary AI Advances

In principle recent advances like chatGPT use
semantic networks (image above). To reach their
advanced features they employ highly sophisticated
language models, which are in a way rules.

Technically chatGPT et al are backed by neural
networks that require massive amounts of computing
power to train the language models on very large
data volumes, like text on the web.

It is an expensive and not fully controlled process
that makes the product flawed and inefficient, albeit
not useless. The neural network is akin to a black
box (image right, left side).

The tech itself is too inefficient to be useful in games
that need smart behaviour, adaptability, and
reactivity.

This AI also uses rules that could be described by
semantic networks.

There are much more efficient ways to implement
rules-based systems. The AI is backed by
processes implemented in C++, with highly
optimized algorithms evaluating only what is
necessary.

At its core are methods that manage large rulesets
on the one hand and employ these to arrive at
logical behaviour in a given situation. Critical is the
ability to determine leverage and to know what is
important and what not. The key for this are the
innovations on page 9. Lookahead is important for
the AI to gain insight of what can happen in a
specific situation, which makes it technologically a
key.

The complexity of the real world is acknowledged
by providing the designers with customized tools
and interfaces to edit the rules that matter for their
application.

In a way we use human intelligence and direct
modelling backed up by sophisticated lookahead
algorithms to create artificial intelligence.

It is direct, immediate, high-performance
computing that is exponentially faster than neural
networks (image left, right side).

10/01/2024 22

Work required

Important: doable vs feasible

The features presented in this tech overview are doable in the sense that we
have the technological foundation to implement these.

However what can be implemented in a specific real world project needs
to be assessed and negotiated based on the tasks at hand.

In general the features in the original presentation at the beginning are relatively straightforward to implement.
In contrast the complete development cycle presented in the second part requires prototyping to arrive at
the full functionality. How much is feasible depends very much on the complexity and demands of a specific project.

10/01/2024 23

AI

Prototype AI Architecture
Behaviour emerges from rules automatically

#1 Lookahead determines possible behaviour

#2 The data and patterns are fed back

#3 NPC behaviour is constructed automatically
and based on the interactions that can happen

#4 Competitive and cooperative interaction
between NPCs/Players is factored into the
behaviour

#5 Distributed AI written in C++ connected to an
entity component system; it makes the entire
game world organic, systemic and intelligent

#6 Seamlessly integrated crowd behaviour

#7 Reactive environment that interacts with other
entities and exhibits its own behaviour; AI
placement of objects and construction of the
environment is possible

#8 Objects with context-sensitive properties

#9 Equipment that affects behaviour

#10 AI story-telling as a mixture of crafted and
generated content

Behaviour/
State Tree

t (lookahead)

Event Sequencing constructs likely behaviour patterns

(feedback and learning)

#1

#5

#2

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

Behaviour/
State Tree

S
ta

te

NPC

NPC

NPC

NPC

Crowd

Environment

Object

Equipment

constru
ct

#3

Placeholder

Player#4

Distributed AI
connecting everything

#6

#7

#8

#9

Behaviour/
State Tree

NPC

Such an AI system has to solve formidable
technological challenges to exceed existing
tech

#11 Orders of magnitude more efficient lookahead
to make this AI feasible in real time

#12 Sophisticated feedback and learning
architecture that the AI’s features improve beyond
crude and easily as artificial discernible behaviour

#13 Intelligent backend architecture to master
abstraction and enable uniform rulebased systems

Behaviour/
State Tree

Story

#10

https://www.quantomas.de/event-sequencing/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

